Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

TECH NEWS | Researchers develop multi-purpose silicon chip for quantum information processing

0

An international team have demonstrated a new multi-functional quantum processor which can be used as a scientific tool to perform a wide array of quantum information experiments.

quantum-processor

LONDON, ENGLAND — An international team led by UK and Chinese researchers have demonstrated a new multi-functional quantum processor which can be used as a scientific tool to perform a wide array of quantum information experiments, according to a study released Monday by the University of Bristol.

The team has been using silicon photonic chips as a way to try to build quantum computing components on a large scale and the latest result demonstrates it is possible to fully control two qubits of information within a single integrated chip. This means any task that can be achieved with two qubits, can be programmed and realized with the device.

In traditional computers, bits take the form of either being a “1” or a “0”, while quantum computers are instead based on “qubits” that can be in a superposition of the “0” and “1” states. Multiple qubits can also be linked in a special way called quantum entanglement. These two quantum physical properties provide the power to quantum computers.

With the newly-developed processor, researchers can not only perform quantum information experiments, but show the way to how fully functional quantum computers might be engineered from large scale fabrication processes.

This is really important. Because one of the challenges of bringing quantum computing technology into real life is how to make a quantum computer in a way that its many parts can be made with very high quality and ultimately at low cost.

“It’s a very primitive processor, because it only works on two qubits, which means there is still a long way before we can do useful computations with this technology,” said Lead author, Dr Xiaogang Qiang, who undertook the work whilst studying for a PhD at the University of Bristol, and now works in China’s National University of Defence Technology.

“But what is exciting is that the different properties of silicon photonics that can be used for making a quantum computer have been combined together in one device,” Qiang also said.

The integrated photonics effort started in 2008 and was an answer to the growing concern that individual mirrors and optical elements are just too big and unstable to realize the large complex circuits that a quantum computer will be built.

“We need to be looking at how to make quantum computers out of technology that is scalable, which includes technology that we know can be built incredibly precisely on a tremendous scale,” and the team think silicon is a promising material to do this, said Dr Jonathan Matthews, a member of the research team based at the Quantum Engineering Technology Labs at the University of Bristol.

The study has been published in the journal Nature Photonics.

xinhua
by Xinhua News Agency
Xinhua News Agency at Xinhua News Agency | Website

Leave a Reply

Your email address will not be published. Required fields are marked *