Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

SCI-TECH | New catalyst may help turn water into fuel: study

0

Researchers at the University of Illinois (UI) have developed a new catalyst that may have cleared the obstacles of abundance, stability in acid conditions and efficiency in generating hydrogen in a sustainable way.

glass-water

CHICAGO, ILLINOIS — Researchers at the University of Illinois (UI) have developed a new catalyst that may have cleared the obstacles of abundance, stability in acid conditions and efficiency in generating hydrogen in a sustainable way.

The catalyst is an electrocatalytic material made from mixing metal compounds with substance called perchloric acid.

The researchers first experimented with the procedure for making this new material by using different acids and heating temperatures to increase the rate of the water-splitting reaction.

The researchers found that when they used perchloric acid as a catalyst and let the mixture react under heat, the physical nature of the yttrium ruthenate product changed.

“The material became more porous and also had a new crystalline structure, different from all the solid catalysts we made before,” said Jaemin Kim, the lead author and a postdoctoral researcher. The new porous material the team developed, a pyrochlore oxide of yttrium ruthenate, can split water molecules at a higher rate than the current industry standard.

The researchers looked at the structure of the new material with an electron microscope and found that it is four times more porous than the original yttrium ruthenate they developed in a previous study, and three times that of the iridium and ruthenium oxides used commercially.

“It was surprising to find that the acid we chose as a catalyst for this reaction turned out to improve the structure of the material used for the electrodes,” said Hong Yang, co-author and professor of chemical and biomolecular engineering at the University of Illinois.

In the next step, the researchers will fabricate a laboratory-scale device for further testing and to continue to improve the porous electrode stability in acidic environments.

“Stability of the electrodes in acid will always be a problem, but we feel that we have come up with something new and different when compared with other work in this area,” Yang said. “This type of research will be quite impactful regarding hydrogen generation for sustainable energy in the future.”

The study has been published in the journal Angewandte Chemie.

roborter
by TechSabado.com editors
Tech News Website at TechSabado.com | Website

Leave a Reply

Your email address will not be published. Required fields are marked *