Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

SCI-TECH | Scientists create programmable molecular computing system

0

Computer scientists at the California Institute of Technology (Caltech), University of California, Davis (UC Davis), and Maynooth University in Ireland have designed DNA molecules that can self-assemble into patterns essentially by running their own program.

computer-codes

LOS ANGELES, CALIFORNIA — Computer scientists at the California Institute of Technology (Caltech), University of California, Davis (UC Davis), and Maynooth University in Ireland have designed DNA molecules that can self-assemble into patterns essentially by running their own program.

In a paper to be published in Nature on March 21, a team headed by Caltech’s Erik Winfree, professor of computer science, computation and neural systems, and bioengineering, showed how the DNA computations could execute six-bit algorithms that perform simple tasks.

“The ultimate goal is to use computation to grow structures and enable more sophisticated molecular engineering,” said David Doty, assistant professor of computer science at UC Davis and co-first author on the paper.

The system is analogous to a computer, but instead of using transistors and diodes, it uses molecules to represent a six-bit binary number (for example, 011001). The team developed a variety of algorithms that can be computed by the molecules, according to a release of UC Davis.

The team was able to demonstrate algorithms for a variety of tasks, including counting exercises, random walks and drawing patterns such as zigzags, diamonds and a double helix in the DNA.

“We were surprised by the versatility of algorithms we were able to design, despite being limited to six-bit inputs,” Doty said. The researchers were able to design and run 21 algorithms over the course of the experiments, demonstrating the potential of the system, he said.

roborter
by TechSabado.com editors
Tech News Website at  | Website

Leave a Reply

Your email address will not be published. Required fields are marked *