Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

SCI-TECH | CERN scientists observe long-sought decay of Higgs boson

0

Six years after the Higgs boson was discovered, scientists at European Organization for Nuclear Research (CERN) have at last observed its decaying to fundamental particles known as bottom quarks.

higgs-bosson-field

GENEVA, SWITZERLAND — Six years after the Higgs boson was discovered, scientists at European Organization for Nuclear Research (CERN) have at last observed its decaying to fundamental particles known as bottom quarks, a milestone in the exploration of the “God particle,” according to a press release by CERN on Tuesday.

The Standard Model of particle physics predicts that about 60 percent of the time a Higgs boson will decay to a pair of bottom quarks, the second-heaviest of the six flavors of quarks. Testing this prediction is crucial because the result would either lend support to the Standard Model, which is built upon the idea that the Higgs field endows quarks and other fundamental particles with mass, or rock its foundations and point to new physics.

The latest finding of the decay was jointly presented Tuesday by the two experiment teams, ATLAS and CMS, at the Large Hadron Collider (LHC), which is consistent with the hypothesis that the all-pervading quantum field behind the Higgs boson also gives mass to the bottom quark. Both teams have submitted their results for publication.

To extract the signal, the ATLAS and CMS collaborations each combined data from the first and second runs of the LHC, which involved collisions at energies of seven, eight and 13 TeV. They then applied complex analysis methods to the data. The upshot was the detection of the decay of the Higgs boson to a pair of bottom quarks with a significance that exceeds five standard deviations. Furthermore, both teams measured a rate for the decay that is consistent with the Standard Model prediction, within the current precision of the measurement.

“This observation is a milestone in the exploration of the Higgs boson. It shows that the ATLAS and CMS experiments have achieved deep understanding of their data and a control of backgrounds that surpasses expectations,” said Karl Jakobs, spokesperson of the ATLAS collaboration.

With more data, scientists will improve the precision of these and other measurements and probe the decay of the Higgs boson into a pair of much-less-massive fermions called muons, always watching for deviations in the data that could point to physics beyond the Standard Model.

“The experiments continue to home in on the Higgs particle, which is often considered a portal to new physics. These beautiful and early achievements also underscore our plans for upgrading the LHC to substantially increase the statistics,” said CERN Director for Research and Computing Eckhard Elsen.

xinhua
by Xinhua News Agency
Xinhua News Agency at Xinhua News Agency | Website

Leave a Reply

Your email address will not be published. Required fields are marked *