Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

CLIMATE CHANGE | Melting water causing Antarctic ice to buckle: scientists

0

A team of scientists have for the first time directly observed an Antarctic ice shelf bending under the weight of ponding meltwater on top.

Antarctica ice

Photo: Glacier in Antarctica by NASA

CHICAGO, ILLINOIS — A team of scientists from the University of Chicago (UChicago) and the Cooperative Institute for Research in Environmental Sciences have for the first time directly observed an Antarctic ice shelf bending under the weight of ponding meltwater on top, a phenomenon that may have triggered the historic 2002 collapse of the Larsen B ice shelf.

The researchers examined data and noticed that in the months leading up to the breakup, the ice shelf was dotted with more than 2,000 meltwater lakes, according to a news release posted on the website of UChicago Wednesday.

During the melting season, lakes may form on the surface of ice shelves, pooling the weight of melting snow and ice into many areas of liquid water. These lakes can weigh 50,000 to 2 million tons each, and that pushes downward on the ice, creating an indent. If the lake drains, this indent pops back up. If the resultant stress is large enough, the ice surrounding the lake basin weakens, and may start to break, the researchers predicted.

To measure how much these meltwater lakes were distorting the floating Antarctic ice, the researchers first scouted where they thought the lakes would develop. They identified four lake basins to outfit with GPS sensors.

In November 2016, before the melt season began, the researchers accessed their field site on the McMurdo Ice Shelf. At each of the four lakes, they installed self-contained instruments that measured vertical elevation and lake water depths, each fixed on a metal pole drilled over 6 feet deep into the ice. Three months later, they flew back to retrieve the instruments.

The researchers found that at the center of each lake, the ice shelf moved down and then up by around 3 to 4 feet in response to each lake filling and then draining.

Climate models predict that there will be more melting across more ice shelves over the next few decades, leading to an increase in the occurrence of meltwater lakes.

“These observations are important because they help us better understand the triggers of ice shelf breakup, which leads to sea level rise,” said Alison Banwell, a postdoctoral visiting fellow at CIRES and lead author of the study. “Our results can be used to improve models to better predict which ice shelves are more vulnerable and are most susceptible to collapse.”

The study was published Wednesday in Nature Communications.

Leave a Reply

Your email address will not be published. Required fields are marked *