Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

TECH NEWS | Training computers to tease out the subtext behind the text

0

Computer scientists use machine learning to connect real-world events with text on social media and in news articles.

Dan Goldwasser, associate professor of computer science at Purdue University

Dan Goldwasser, associate professor of computer science at Purdue University, uses his expertise in machine learning to connect natural language with real-world scenarios and to guide natural language understanding. Source: Purdue University

It is hard enough for humans to interpret the deeper meaning and context of social media and news articles. Asking computers to do it is a nearly impossible task. Even C-3PO, fluent in over 6 million forms of communication, misses the subtext much of the time.

Natural language processing, the subfield of artificial intelligence connecting computers with human languages, uses statistical methods to analyze language, often without incorporating the real-world context needed for understanding the shifts and currents of human society. To do that, you have to translate online communication, and the context from which it emerges, into something the computers can parse and reason over.

Dan Goldwasser, associate professor of computer science at Purdue University, and other members of his team strive to address that by developing new ways to model human language and allow computers to better understand us.

“The motivation of our work is to get a better understanding of public discourse, how different issues are discussed, the arguments made and the perspectives underlying these arguments,” Goldwasser said. “We would like to represent the points of view expressed by the thousands, or even more, of people describing their experiences online. Understanding the language used to discuss issues can help shed light on the different considerations behind decision-making processes, including both individual health and well-being choices and broader policy decisions.”

Goldwasser emphasizes that part of the challenge is that so much of online communication relies on readers already knowing the context – whether it’s shorthand on Twitter or the basis of understanding a meme. To analyze the communication, the context is a vital part of the message.

“In many of the scenarios we study, progress relies on finding new ways to conceptualize language understanding, by grounding it in a real-world context,” he said. “Operationalizing it requires developing new technical solutions.”

Goldwasser and his students use techniques distilled from the combined wisdom of computer science, artificial intelligence and computational social science.

Goldwasser’s lab studies the language used on social media, traditional media stories and in legislative texts to understand the context and assumptions of the speakers and writers. In a world where the written word is flourishing and every person with an internet connection can act as a journalist, being able to study and analyze that writing in an unbiased manner is crucial to human understanding of our own society.

Purdue News Service

Leave a Reply

Your email address will not be published. Required fields are marked *